
RBF Liquids: An Adaptive PIC Solver Using RBF-FD

RAFAEL NAKANISHI∗, ICMC-USP, Brazil
FILIPE NASCIMENTO∗, ICMC-USP, Brazil
RAFAEL CAMPOS, ICMC-USP, Brazil
PAULO PAGLIOSA, FACOM-UFMS, Brazil
AFONSO PAIVA, ICMC-USP, Brazil

Fig. 1. Simulation of a dam break with obstacles using an octree with a characteristic grid size of 2−8 and 4M PIC particles (top). Our method adapts the grid
and particles around the free-surface, generating 68% fewer particles and 55% fewer fluid cells than regular PIC-based solvers. Besides, our adaptive pressure
solver is at least twice faster than regular ones. A cutaway view shows our tree-based grid (red) and its underlying particle sampling (bottom). Lighter particle
colors indicate fast velocities.

We introduce a novel liquid simulation approach that combines a spatially
adaptive pressure projection solver with the Particle-in-Cell (PIC) method.
The solver relies on a generalized version of the Finite Difference (FD)
method to approximate the pressure field and its gradients in tree-based grid
discretizations, possibly non-graded. In our approach, FD stencils are com-
puted by using meshfree interpolations provided by a variant of Radial Basis
Function (RBF), known as RBF-Finite-Difference (RBF-FD). This meshfree
version of the FD produces differentiation weights on scattered nodes with
high-order accuracy. Our method adapts a quadtree/octree dynamically in
a narrow-band around the liquid interface, providing an adaptive particle

∗Joint first authors.

Authors’ addresses: Rafael Nakanishi, rnakanishi@usp.br, ICMC-USP, São Carlos,
SP, 13566-590, Brazil; Filipe Nascimento, filipecn@usp.br, ICMC-USP, São Carlos, SP,
Brazil; Rafael Campos, rafael_campos@usp.br, ICMC-USP, São Carlos, SP, Brazil; Paulo
Pagliosa, pagliosa@facom.ufms.br, FACOM-UFMS, Campo Grande, MS, Brazil; Afonso
Paiva, apneto@icmc.usp.br, ICMC-USP, São Carlos, SP, Brazil.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0730-0301/2020/12-ART170 $15.00
https://doi.org/10.1145/3414685.3417794

sampling for the PIC advection step. Furthermore, RBF affords an accurate
scheme for velocity transfer between the grid and particles, keeping the
system’s stability and avoiding numerical dissipation. We also present a data
structure that connects the spatial subdivision of a quadtree/octree with
the topology of its corresponding dual-graph. Our data structure makes the
setup of stencils straightforward, allowing its updating without the need
to rebuild it from scratch at each time-step. We show the effectiveness and
accuracy of our solver by simulating incompressible inviscid fluids and
comparing results with regular PIC-based solvers available in the literature.

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional Key Words and Phrases: Radial Basis Function (RBF), Particle-In-
Cell (PIC), Adaptive grids, Liquid animation

ACM Reference Format:
Rafael Nakanishi, Filipe Nascimento, Rafael Campos, Paulo Pagliosa, andAfonso
Paiva. 2020. RBF Liquids: An Adaptive PIC Solver Using RBF-FD. ACM Trans.
Graph. 39, 6, Article 170 (December 2020), 13 pages. https://doi.org/10.1145/
3414685.3417794

1 INTRODUCTION
Fluid simulation is one of the most prominent areas in computer
animation, demanding intense research activity. From small-scale
raindrops to large-scale tsunami scenes, FX artists and directors
strive for realistic visual effects capable of reproducing the intricate

ACM Trans. Graph., Vol. 39, No. 6, Article 170. Publication date: December 2020.

170:2 • Nakanishi, R. et al

motion of liquids in different scales. This motivates the search for
efficient fluid simulation methods that can be made spatially adap-
tive over the computational domain to reduce the computational
burden and the memory load on empty regions (i.e., without fluid)
and regions far from the liquid surface.
Adaptive meshes have become attractive in physically-based

modeling [Manteaux et al. 2017], primarily for the pressure pro-
jection [Stam 1999] step in incompressible fluid flow simulations.
Usually, in these simulations, the spatial adaptivity is achieved by
replacing uniform grids by quadtree (in 2D) or octree (in 3D) grids.
Tree-based grids combine the best of both worlds: the ability to
use fast and compact Cartesian discretizations, such as finite differ-
ences (FD) and finite volumes (FV), and the versatility and accuracy
of local mesh refinement. However, the refinement of quadtrees/oc-
trees can produce non-conforming meshes that contain the unde-
sirable T-junctions at regions where the mesh resolution changes.
This configuration causes a severe limitation in traditional numer-
ical methods because we cannot directly use the standard FD or
FV stencils, causing the adaptive creation of the stencil closer to
coarse-to-fine grid interfaces a delicate task, as it can ruin the entire
simulation due to numerical instabilities that can occur in these
regions. A way to overcome this problem is to build stencils using
local high-order geometrical interpolations [Batty 2017; Guittet et al.
2015; Min and Gibou 2007; Min et al. 2006]. These interpolations
depend on the arrangement of the cells in the neighborhood of
the evaluation node and can become quite complicated in 3D sim-
ulations, mainly in staggered discretizations which store pressure
samples at cell centers and velocity components at cell faces. An-
other alternative to computing generalized FD stencils is the use of
meshfree approximations [Olshanskii et al. 2013; Sousa et al. 2019].
This class of methods requires solving a small least-squares problem
at the T-junctions to determine the suitable stencil.
In this paper, we introduce a novel staggered tree-based grid

discretization, which provides a high-order approximation of the
pressure field and its gradients even in non-graded quadtree/octree
configurations, i.e., the difference of the resolution levels (depth)
between adjacent cells is not constrained. Our method relies on
meshfree interpolations computed via Radial Basis Function (RBF)
[Fasshauer 2007] to enhance and generalize the FD method, pro-
viding differentiation weights on scattered node stencils in spatial
discretizations. This meshfree version of the FD method is known
as RBF-Finite-Difference (RBF-FD) [Wright and Fornberg 2006] and
in our best knowledge, this is the first time RBF-FD has been used
to simulate free-surface flows in the Computer Graphics and Com-
putational Physics literature.

Additionally, we combine our robust and accurate tree-based pres-
sure projection solver with the Particle-in-Cell (PIC) method [Brid-
son 2015] straightforwardly and efficiently. Our fluid solver grace-
fully adapts a quadtree/octree dynamically during the simulation in
a narrow-band around the liquid surface; this strategy also provides
an adaptive particle sampling for the PIC advection step, drasti-
cally reducing the number of PIC particles inside the fluid without
compromising the visual details of the liquid surface. Moreover, the
RBF interpolation gives a higher-order scheme for velocity transfer
between the grid and particles. This procedure keeps the stability
of the system, avoiding numerical dissipation even in coarse grid

cells or in regions with a low density of particles, and is visually
competitive with Affine Particle-in-Cell (APIC) [Jiang et al. 2015].
Fig. 1 shows our method in action.

In summary, the contributions of our method are:

• a novel fully adaptive fluid solver that uses both tree-based
grids and adaptive particle sampling;

• an approach which generalizes FD stencils in graded and
non-graded grids;

• a pressure projection solver on adaptive grids that allows
second-order accuracy for the pressure field and its gradients
in L∞ norm;

• a stable and accurate scheme for PIC advection tailored to
adaptive grids and non-uniform particle distribution;

• a tree-based data structure able to adapt itself along with the
simulation, providing the stencil layouts automatically, i.e.,
without queries.

2 RELATED WORK
To better contextualize our approach, we organize the existing me-
thods for spatially-adaptive fluid simulation into three groups, accor-
ding to their discretization.

Adaptive grid structures. In Computer Graphics, octree discretiza-
tions of the fluid flow equations are typically built around a stag-
gered FV discretization combined with level set advection. Losasso
et al. [2004] introduced an innovative method combining particle
level set method and a first-order accurate pressure projection in L∞
to simulate liquid and smoke on non-graded octrees. Although their
method results in a symmetric positive definite (SPD) linear system,
which can be efficiently solved by the Conjugate Gradient, the low
order accuracy for the pressure can produce spurious velocity fields.
Later, Losasso et al. [2006] improved the previous method to achieve
second-order accuracy for pressure projection while preserving the
non-graded tree structure and the resulting SPD system.
However, the overall accuracy depends on the accuracy of the

pressure gradients that are limited to first-order accuracy. Hong et al.
[2009] combined the Losasso’s octree-based method of first-order of
accuracy with Fluid Implicit Particle (FLIP) [Bridson 2015]. Another
spatially-adaptive alternative is the use of tall cell grids [Chentanez
and Müller 2011; Irving et al. 2006], where the cells in one direction
are combined to coarsen the mesh. This approach leads to increased
complexity in handling faces shared between regular and tall cells.
Ferstl et al. [2014] presented a multigrid solver devoted to fluid simu-
lations on octree grids using finite element method (FEM). However,
their method only deals with graded octrees, where the difference
of depth between adjacent octree cells is constrained to one. As
stated by Batty [2017], graded discretizations lead to an unwanted
increase in the number of cells. Nielsen and Bridson [2016] pro-
vided a short discussion (without complete details) in coupling FLIP
with a FEM-based adaptive tile tree structure fully implemented in
Autodesk Maya’s Bifrost. Gao et al. [2017] introduced an adaptive
variant of the Material Point Method (MPM) to simulate a wide
range of elastic and plastic materials on non-graded grids. However,
this adaptive MPM does not always outperform uniform MPM due
to explicit time integration. Recently, Goldade et al. [2019] proposed

ACM Trans. Graph., Vol. 39, No. 6, Article 170. Publication date: December 2020.

RBF Liquids: An Adaptive PIC Solver Using RBF-FD • 170:3

an adaptive variational FD framework on graded octrees to provide
an SPD discretization for viscous liquids.

Adaptive particle sampling. There are adaptive methods that ad-
dress only the particle sampling aspect in PIC/FLIP solvers. Ando
et al. [2012] proposed adaptive FLIP, which preserves thin sheets
of fluid by inserting particles in poorly sampled regions. Recently,
the narrow-band FLIP method [Ferstl et al. 2016; Sato et al. 2018]
was developed to alleviate the number of particles in FLIP simula-
tions using particles only near the liquid surface. However, they
rely on a dense and uniform grid for the pressure projection. On the
other hand, particle-based methods, which are typically based on
Smoothed Particle Hydrodynamics (SPH) [Ihmsen et al. 2014] and
do not employ meshes, can benefit from adaptivity by modifying the
number of particles in the simulation and their distribution [Adams
et al. 2007; Solenthaler and Gross 2011; Winchenbach et al. 2017].

Tetrahedral meshes and Voronoi diagrams. Klingner et al. [2006]
and Chentanez et al. [2007] highlighted how unstructured tetra-
hedral meshes are inherently adaptive by conforming to complex
boundaries and allowing for differently-sized tetrahedra, enabling
finer resolution where computational effort is needed. Since collid-
ing objects and boundaries can be animated, the mesh has to be
continuously regenerated. Batty et al. [2010] combined embedded
boundary techniques with tetrahedral meshes to avoid the remesh-
ing problem. Ando et al. [2013] proposed a second-order accurate
liquid solver on adaptive tetrahedral meshes, which combines a
variant of FEM with FLIP advection. However, their method drops
to the first-order accuracy due to poorly shaped tetrahedra, which
occur in coarse-to-fine resolution interfaces. Voronoi-based meth-
ods can adaptively remove otherwise uniform sample points [Sin
et al. 2009] or adaptively place them [Brochu et al. 2010]. Aanjaneya
et al. [2017] proposed an octree-based fluid solver combining power
diagrams and sparse paged grids [Setaluri et al. 2014]. The key idea
of this method is the computation of a power diagram of the octree
cell centers providing second-order accuracy for pressure projection
while still resulting in an SPD system. Like Ferstl’s method, this
approach is restricted to graded octrees.

3 AN OVERVIEW OF THE RBF-FD METHOD
RBF is a ubiquitous tool in scattered data interpolation, providing
efficient and flexible meshfree methods to solve partial differen-
tial equations on arbitrary domains [Fasshauer 2007; Fornberg and
Flyer 2015]. In Computer Graphics, RBFs are popular in geometric
modeling applications, mainly in surface reconstruction from scat-
tered Hermite data (surface points and its normals) [Carr et al. 2001;
Macêdo et al. 2011; Ohtake et al. 2005; Turk and O’Brien 2002].
Since the RBF-FD formulas are derived from RBF interpolants,

we review the basic concepts of RBF interpolation and then provide
a brief introduction to RBF-FD.

3.1 Radial basis function (RBF)
An RBF is a radially symmetric function Φk : Ω ⊆ Rd → R which
relies on the Euclidean distance between its center xk and the eval-
uated point x = (x1, . . . ,xd), both in the domain Ω. Mathematically,
an RBF can be represented by Φk (x) = ϕ(r) with r = ∥x − xk ∥,

where ϕ is a scalar function on [0,∞) and ∥ · ∥ denotes the Eu-
clidean norm. There are many possible choices for ϕ(r), as can
be seen in [Fasshauer 2007]. In particular, we use a Polyharmonic
Spline (PHS) given by odd radial powers:

ϕ(r) = r s , s = 1, 3, 5, . . .

The main advantage of PHS, in contrast to infinitely smooth RBFs
(e.g., Gaussian and Multiquadric), is that they do not require a shape
parameter, avoiding a laborious fine-tuning for finding a suitable
parameter w.r.t. the accuracy and stability of the RBF interpolation.

3.2 RBF interpolation with polynomials
Given a set of distinct nodes {xk }Nk=1 and function values yk =
y(xk) ∈ R, we want to find an interpolant Sy : Ω → R such that

Sy (xi) = yi , ∀i = 1, . . . ,N . (1)

The general form of an RBF interpolant is given by:

Sy (x) =
N∑
k=1

αk ϕ(∥x − xk ∥) +
M∑
j=1

βj Pj (x) , (2)

where {P1(x), . . . , PM (x)} is a basis for theM =
(m+d

d
)
-dimensional

space Πd
m of all d-variate polynomials with degree less than or equal

tom. To guarantee uniqueness of the coefficients αk and βj , we need
to enforce additional constraints:

N∑
k=1

αk Pj (xk) = 0 , ∀j = 1, . . . ,M . (3)

The constraints (1) and (3) result in the following linear system of
order N +M : [

A P
P⊤ O

] [
α
β

]
=

[
y
0

]
, (4)

where the entries of the square matrix A (of order N) are given
by Ai j = ϕ(∥xi − xj ∥), P is a N × M matrix with entries Pi j =
Pj (xi), O is a square zero matrix of order M , α = [α1, . . . ,αN]⊤,
β = [β1, . . . , βM]⊤, y = [y1, . . . ,yN]⊤ and 0 is a zero vector of
length M . Furthermore, the block matrix of the system (4) is SPD
(or negative definite), thus ensuring that the system has a unique
solution.
An essential remark on RBFs with polynomial augmentation is

the guarantee of polynomial precision, i.e., if y ∈ Πd
m then the set

of function values {yk }Nk=1 with N ≥ M is fitted by Sy = y, except
for errors on the order of machine accuracy.

3.3 RBF-FD formulas
In this section, we derive RBF-FD formulas for approximating the
set of differential equations that describe the behavior of liquids.
Let L be a linear differential operator (e.g., par-

tial derivatives ∂/∂xk , Laplacian operator ∆) and
the set Xi be a stencil composed by the scattered
nodes {xk }Nk=1 ⊆ Ω. For a given location xi in
the domain Ω (itself included in the stencil Xi or not), we desire
to approximate Ly(x) evaluated at the center node xi as a linear

ACM Trans. Graph., Vol. 39, No. 6, Article 170. Publication date: December 2020.

170:4 • Nakanishi, R. et al

combination of the function values {yk }Nk=1 as follows:

Ly(xi) =
N∑
k=1

ωk yk . (5)

The coefficients ωk are known as differentiation weights and N is
the stencil size.

Similar to the RBF interpolation, the weights ωk are obtained by
solving the following linear system:[

A P
P⊤ O

] [
ω
γ

]
=

[
Lϕ
LP

]
, (6)

withω = [ω1, . . . ,ωN]⊤,γ ∈ RM ,LP = [LP1(xi), . . . ,LPM (xi)]⊤

and Lϕ = [Lϕ(∥xi −x1∥), . . . ,Lϕ(∥xi −xN ∥)]⊤. Since L operates
on the right-hand side of Eqn. (6), the RBF-FD weights for the partial
derivatives require the PHS derivatives. By the chain rule, we have:
∂ϕ

∂xk
(r) = sxkr

s−2 and ∂2ϕ

∂x2k
(r) = sr s−2 + s(s − 2)x2kr

s−4 ,

After solving the linear system (6), the weights stored in γ are
discarded. For more details about the derivation of the RBF-FD
approximation, see the App. A.
The choice of the PHS-polynomial basis is due to its many at-

tractive properties, as reported by Flyer et al. [2016b]. Among these
properties, we highlight:

• The approximations are shape parameter-free, and their in-
terpolation matrix has an acceptable condition number;

• The accuracy of Sy and Ly can be improved by increasing
the polynomial basis and the PHS order;

• The convergence is dominated by the highest degree in Πd
m .

Connection to standard FD. Regardless of the
choice of the RBF, the standard FD method can be
derived from RBF-FD when the stencil is parallel to
coordinate axes, and its nodes are collinear. In this
case, polynomials in Π1

1 are used to approximate
partial derivatives in the direction xk . For instance,
given a scalar-valued function f and denoting f (xi) by fi , we want
to compute ∂fi/∂xk ≈ ωi−1 fi−1 + ωi+1 fi+1. The weights are the
solution of the following linear system:

ϕ(0) ϕ(2r) 1 (xi−1)k
ϕ(2r) ϕ(0) 1 (xi+1)k
1 1 0 0

(xi−1)k (xi+1)k 0 0

ωi−1
ωi+1
γi−1
γi+1

 =

∂ϕ
∂z (r)
∂ϕ
∂z (r)
0
1

where r = ∥xi+1 − xi ∥ = ∥xi−1 − xi ∥ and (·)k is the k-th coordinate
of a point. Thus, we have ωi+1 = 1/2r and ωi−1 = −1/2r . Therefore,

∂ fi
∂xk

≈
fi+1 − fi−1

2r . (7)

Implementation. The weights can easily be computed in parallel
architectures. To simplify the evaluation of LP on the right-hand
side of Eqn. (6), the stencil nodes of Xi are translated such that the
center xi coincides with the origin in Rd . Thus, the entries of LP
become all zero, except for the few entries equal to 1 or 2, depending
on whether the derivative order of L is of the first or second order.
However, switching an RBF center by the center node causes a

change of sign in the first-order derivatives, because ∂ϕ/∂xk (∥−x∥) =
−∂ϕ/∂xk (∥x∥). A Python code snippet to compute RBF-FD weights
for Laplacian operator and first-order derivatives in 3D for a single
stencil can be found in the App. B.

4 OUR ADAPTIVE PIC SOLVER
In this section, we describe each component of our fully adaptive
PIC solver. Our primary objective is to solve the Euler equations for
incompressible inviscid fluid flows, given by

Du
Dt
= −

∇p

ρ
+ f and ∇ · u = 0 ,

where u represents the fluid velocity; ρ the fluid density, which we
assume to be constant and equal to 1; p is the inner fluid pressure; f
is the accumulation of external forces to the fluid; and D/Dt denotes
the material derivative.

PICmethods try to combine the benefits of both grid andmeshfree
discretizations: Lagrangian particles are used to advect all trans-
ported quantities, while the pressure projection scheme [Stam 1999]
is computed on an Eulerian grid. This scheme projects the velocities
into a divergence-free space by solving the pressure Poisson equa-
tion (PPE): ∆p = δt ρ−1∇·u∗, where δt denotes the time-step and u∗
an intermediate velocity after the advection. Then, the velocities are
updated by u = u∗−δt ρ−1∇p. In Sec. 4.2, we provide discretizations
of these differential operators on adaptive grids.

4.1 Spatial discretization and adaptivity
Our spatial discretization is based on staggered
quadtrees/octrees that store velocity compo-
nents at cell faces (in this section, we use the
term faces to refer to both faces, in 3D, and
edges, in 2D) and pressure samples at cell cen-
ters, similar to the staggered grid introduced
with the Marker-And-Cell (MAC) method [McKee et al. 2008]. This
discretization has more degrees of freedom for velocity quantities
than a usual collocated regular grid since they are stored into cell
faces of an adaptive grid (where T-junctions may occur). Further-
more, in the MAC method, a grid cell is labeled empty if it contains
no particles in its interior. Otherwise, it is labeled as a fluid cell.
Tree-based structures provide an efficient way to decompose

the domain adaptively with a reduced number of resulting cells
when compared to other adaptive structures, like tetrahedral meshes.
The smaller the number of cells, the smaller the PPE system’s size
to be solved at each time-step of the simulation.

The adaptivity is lead by the liquid regions, which demand higher
numerical accuracy and better representation of the visual details,
such as the liquid surface and liquid-solid interfaces. For each time-
step, our adaptive grid splits and/or merges cells when needed,
keeping a locally-refined grid in a narrow-band around the liquid
surface and liquid-solid interfaces, since higher resolutions capture
sharper and smaller features of the free-surface and accurate solid-
liquid interactions that may disappear when using coarser cells.
Also, a region of finer cells is kept at the air (empty) cells near the
surface, to avoid that particles change abruptly from finer to coarser
cells.

ACM Trans. Graph., Vol. 39, No. 6, Article 170. Publication date: December 2020.

RBF Liquids: An Adaptive PIC Solver Using RBF-FD • 170:5

Fig. 2. RBF-FD stencil layouts from 1-ring neighborhood: Laplacian (left),
divergence (middle), and gradient (right).

Fluid cells far from the free-surface are coarser than surface cells
(i.e., fluid cells whose 1-ring cell neighborhood contains at least one
cell that is not a fluid cell), since no visual details are obtained from
deep inside the liquid and the RBF interpolation does not dissipate
velocity quantities at coarse cells.

4.2 Discretization of the differential operators
Before computing the RBF-FD weights of each differential operator
by solving the system (6), we need to build the stencil layouts based
on a MAC grid discretization.

Given a fluid cell CF , the stencil layout of the Laplacian approxi-
mation for pressure at the center ofCF is formed by the cell centers
of its adjacent face cells in the k-ring cell neighborhood. We initially
create the stencils taking k = 1, as shown in Fig. 2. This strategy
allows us to increase the stencil size, just by increasing k , improv-
ing the accuracy of the discretization [Bayona et al. 2017]. Special
treatment is needed when CF is adjacent to a solid cell (i.e., a cell
containing at least part of a wall or another obstacle); in this case,
we create ghost nodes outside of the domain Ω containing liquid
by reflecting the center of CF across the boundary ∂Ω to enforce
boundary conditions (Sec. 4.3). These weights are used to assemble
a sparse Laplacian matrix associated with the resulting PPE system.
The resulting Laplacian matrix from RBF-FD is not symmetric due
to the weights derived from distinct arrangements of the stencils.
This phenomenon may occur even when the topology of stencils are
the same since the distances between neighboring cells may vary,
causing such an asymmetry.

Regarding the stencil setup for the first-order partial derivatives,
the stencil layout associated with divergence of the velocity is also
computed at the center of CF using the velocity components stored
in adjacent faces of its k-ring neighborhood. The stencil of the pres-
sure gradient components is centered on the faces ofCF ; if the cells
that share the same face have different resolutions, the remaining
nodes are taken from the centers of the adjacent face cells in their
k-ring neighborhood.

Notice that if the cells and faces involved in the approximation
of the differential operators have the same resolution (i.e., without
T-junctions), we can directly apply the standard FD instead of RBF-
FD.

4.3 Boundary conditions
Similarly to the standard FD, to determine
pressure values pG at ghost nodes placed out-
side of the domain Ω, we need to impose the
homogeneous Neumann boundary condition
∇p · n = 0 , ∀p ∈ ∂Ω, where n is the unit normal vector pointing

Fig. 3. Velocity transfers between cell faces (red) and particles (blue): parti-
cle → grid (left) and grid→ particle (right).

out of ∂Ω. Discretizing Neumann boundary condition with RBF-FD,
by Eqn. (7), we have:

0 = ∇p · n =
∂p

∂xi
≈

pGi+1 − pi

∥xGi+1 − xi ∥
.

Therefore, pGi+1 = pi . Hence, during the Laplacian matrix assembly,
when a ghost node is present in the stencil, we add its weight to the
center node weight, like in the standard FD scheme.
For boundary conditions at solid walls, we impose the free-slip

condition, i.e., velocity components normal to the walls are zero,
while tangential velocities are equal to the fluid velocity. For the
free-surface, we enforce Dirichlet boundary conditions, i.e., we set
the pressures in air cells to zero. For implementation details, please
see [Kim 2016].

4.4 Particle reseeding
To keep the number of particles in our method low, we resample
the particles when the number of particles in a cell is insufficient or
when there are many more particles than necessary, regardless of
the cell size. For each procedure, we use a user-defined threshold
range to manage the number of particles inside a fluid cellCF . If the
number of particles of CF is out of the threshold range, we delete
its particles and create 2d new sampled particles inside CF using
Halton points [Fasshauer 2007].
The reseeding is necessary to preserve fluid cells with particles,

avoiding velocity transferences from particles that are far from in-
terpolation centers. Our particle reseeding maintains low density of
particles during the simulation without losing details on the surface
or affecting the accuracy of our fluid solver. In our experiments,
the number of particles varies in the threshold ranges [3, 12] and
[5, 15] for 2D and 3D simulations, respectively.

4.5 Particle-grid transfers
Exchange of information between grid and particles is an essential
step in PIC/FLIP advection. In our method, we transfer velocities
between each structure using the RBF interpolation provided by
Eqn. (2) and illustrated by Fig. 3.
For transferring velocities from particles to a given cell face, we

look for particles inside its adjacent cells. Thus, the velocity compo-
nents of these particles are interpolated via RBF to the face center.
Reciprocally, to obtain the velocity transfer from the grid to a given
particle, we take the velocity components of all faces of the cells
incident to the cell which contains this particle. Then, we inter-
polate the velocities stored in the faces to the particles using RBF
again. In particular, for the RBF interpolation, we use PHS of order
s = 5 augmented with polynomials up to the 2nd degree, where the
degree is governed by the number of particles or cell faces.

ACM Trans. Graph., Vol. 39, No. 6, Article 170. Publication date: December 2020.

170:6 • Nakanishi, R. et al

MLS RBF

0 0.4 0.8 1.2 1.6 2
error

Fig. 4. RBF and MLS approximations of a vector field sampled in a non-
graded quadtree (blue).

To demonstrate the accuracy of our transfer, we perform a com-
parison against Moving Least Square (MLS) with a polynomial basis
of Πd

3 as used by Higher-Order Particle-in-Cell (HOPIC) [Edwards
and Bridson 2012]. Fig. 4 shows RBF and MLS approximations of a
vector field given by:

X (x ,y) = (cos(x + 2y), sin(x − 2y)) , (x ,y) ∈ Ω = [−2, 2]2 .

The approximated field is obtained sampling X at the midpoints of
the edges of a quadtree discretization of Ω, splatting the sampled
field onto a regular background grid of resolution 642. We can notice
that RBF achieves higher accuracy regarding root-mean-square error
(RMSE), preserving vector field singularities such as vortices and
saddles even when using a polynomial space of a lower degree.

5 OUR TREE-BASED GRID DATA STRUCTURE
The implementation of a tree-based staggered grid as a classical
octree, in 3D, or a quadtree, in 2D, is not trivial for many reasons:

• The data structure should deal with the tree faces which
belong to the staggered grid since a (large) lower depth cell
can have as neighbors multiple (small) higher-level cells in
the adaptive grid;

• The computation of RBF-FD stencils resulting from different
neighborhood configurations require the traversal of several
levels in the tree (see Fig. 5);

• As the simulation advances over time, the structure should be
updated by splitting or merging leaf cells at each time-step.
Otherwise, a new one should be rebuilt.

To address these issues, we consider the vertices and edges of the
associated dual quadtree/octree, where each dual vertex corresponds
to a single leaf cell, and each dual-edge corresponds to a unique
primal tree face which is shared by two adjacent leaf cells. That set
of dual edges provides the tree faces where the velocity components

Fig. 5. A 2D stencil defined by a center cell and its direct neighbors. The sten-
cil depicted in a quadtree with the center cell in dark green and its adjacent
cells in light green (left). With a quadtree representation, the neighborhood
calculation requires several tree traversals, drawn as dashed arrows (top-
right). With a dual quadtree, the adjacency of neighboring cells is explicitly
represented (bottom-right).

should be stored as well as the explicit topological representation
required to construct the RBF-FD stencils.
In our framework, we introduce a data structure for adaptive

staggered grids, called Cellgraph, which combines the geometry of
the quadtree/octree and the topology of the corresponding dual-tree
into a single graph structure. Each node of the graph is associated
with a leaf cell, i.e., a dual vertex of the grid, and holds the axis-
aligned bounding box (AABB) of the associated cell, while each edge
of the graph is associated with a dual-edge. Such a structure makes
the computation of RBF-FD stencils straightforward, as adjacent leaf
cells are identified explicitly by the graph edges, and larger stencils
can be resolved with simple graph traversal procedures.
Different refinement levels can be achieved by splitting and/or

merging nodes, allowing the graph to change its configuration from
one simulation step to the next, without the need to construct an
entirely new structure from scratch.

5.1 Cell refinement approach
The splitting of a leaf cell C of a quadtree/octree is reflected in the
Cellgraph as follows: the node V of the graph associated with C is
removed and then new nodes corresponding to the child cells of C ,
{C⋆

i }, i = 1, . . . , 2d , are added to the structure. The region given by
the AABB of C is split following the quadtree/octree subdivision
rules, and the resulting AABBs are properly assigned to the new
graph nodes. All the edges adjacent to V are deleted, and new ones
are created to represent, in the graph, the adjacency between each
C⋆
i and the 1-ring cell neighborhood of the parent cell C .
Merging a set of leaf cells {C⋆

i } into a cell C is equivalent to
removing the nodes associated with each C⋆

i from the Cellgraph
and then adding a new node V corresponding to the parent cell C .
The AABB resulting from the union of the removed nodes is assigned
to V . Similarly to splitting, all the edges adjacent to the removed

ACM Trans. Graph., Vol. 39, No. 6, Article 170. Publication date: December 2020.

RBF Liquids: An Adaptive PIC Solver Using RBF-FD • 170:7

Fig. 6. The address code of a node can be used to check if a group of nodes
(cells) can be merged together. On the left, a quadtree depicting two groups
of cells, the green group can be merged, but not the red group. On the right,
the two groups depicted in the resolution pyramid and their respective
address codes on one level up.

nodes are deleted, and new ones are created to reflect the adjacency
between C and its 1-ring cell neighborhood.
It is worth noting that the cells {C⋆

i } can be merged if the cell
C is their parent. Cellgraph checks if the cells associated with a
group of nodes can be merged since each node stores its level and
its address code. Two nodes are siblings and may have the same
parent if they have the same level value and compatible address
codes. The level of a node is the depth level of its associated cell in
the quadtree/octree. The address code of a node represents the index
of its associated cell at the same level as a resolution pyramid (i.e.,
a fully refined quadtree/octree). Two address codes are compatible
if their indices are mapped to the same address code on a higher
level of the pyramid (see Fig. 6).

5.2 Surface tracking
The tracking of the free-surface controls the refinement level of our
adaptive data structure. Before starting the simulation, we create a
Cellgraph with only one node corresponding to the tree’s root cell.
The AABB of the initial node is set to cover the whole region of the
computational domain, and the root cell is classified as a fluid cell.
Next, we split each fluid cell until we reach the maximum depth
of the tree, i.e., all fluid cells are fully refined. Then, we label the
cells associated with the nodes of the resulting Cellgraph as empty,
fluid, surface, or solid cells (see Sec. 4). Moreover, our setup scheme
enforces that cells do not contain both particles and solids. Finally,
all surface nodes are added to a list.
In addition to the surface cell list, we define the cells belonging

to a narrow-band around the liquid surface. While there is a cell C
in the k-ring neighborhood of a surface cell CS , if the level of C
is greater than the level of CS , then C is refined. Otherwise, C is
considered to be in the narrow-band. All the cells with the same
classification outside the narrow-band are merged up to the lowest
level possible. In our experiments, we adopted k = 2.

At each time-step of the simulation, the surface cell list is updated
to redefine the narrow-band. When updating the surface cell list
at the current time-step, we detect new fluid cells and new air
cells without the need to iterate over cells not belonging to the
neighborhood of the surface cells defined at the previous time-step.
One of the advantages of keeping the explicit list of surface cells is
that it optimizes the task of cell material type classification. We can
avoid checking the presence of particles in all cells based on the

Fig. 7. Two sources (brown) pour a liquid in a container. Our RBF-based
method can generate FD stencils in non-graded grids. The fluid cells are
highlighted in light blue.

assumption that fluid cells become air cells and vice-versa only
when changes happen in the list of surface nodes. This strategy
also prevents the appearance of air cells inside the liquid or close to
walls or obstacles.

6 RESULTS
To demonstrate the effectiveness of our approach, we simulate in-
compressible inviscid liquids over different domains. In our experi-
ments, we compute the RBF-FD stencils using PHS of order s = 3
and order s = 5 for the velocity transfers, both augmented with poly-
nomials of Πd

2 . We use the Eigen library [Guennebaud et al. 2010]
to solve all linear systems required by our method since the library
supports parallel implementations. Specifically, we use Householder
QR factorization for the small RBF systems. For the large, sparse,
and non-symmetric PPE system, we use Stabilized Biconjugate Gra-
dient (BiCGSTAB) with Jacobi preconditioner [Barrett et al. 1994]
in double precision and relative tolerance of 10−6. Regarding the
time integration, we use explicit Euler method with the time-step
dictated by the CFL condition, when necessary. The rendered images
and surface reconstruction were produced using SideFX Houdini.

Adaptivity. In our experiments, we employ up to five levels of
refinement for fluid cells, although this is not a strict limitation of
our method. Moreover, we denote the smallest characteristic grid
size by h.
Fig. 1 shows a liquid splash from a dam break with obstacles.

Our method can simulate this flow very efficiently in a fully adap-
tive manner, refining the grid and increasing the number of PIC
particles around the free-surface while reducing the overall number
of particles and grid cells.
Fig. 7 shows the dynamic adaptability of our method in a si-

mulation where two sources are pouring a liquid into a container.

ACM Trans. Graph., Vol. 39, No. 6, Article 170. Publication date: December 2020.

170:8 • Nakanishi, R. et al

Fig. 8. Our Cellgraph dynamically controls the grid refinement/coarsening
as well as the particle sampling in a narrow-band of the interface of a liquid
drop without the need to build an entirely new grid from scratch.

As can be seen, our meshfree approximation can efficiently han-
dle non-graded grid discretizations, allowing for complex stencil
configurations near T-junctions.

Fig. 8 shows the impact of a drop on a liquid layer, the Cellgraph
adapts the grid around the interface dynamically as the simulation
progresses, tracking the topological changes of the free-surface
gracefully. Our structure refines the fluid cells near the liquid surface
and is coarse far away from it, without discarding any information
of the previous time-step.

Comparisons against regular PIC-based solvers. Fig. 9 shows the
behavior of our adaptive RBF-based PIC compared to PIC, FLIP,
and APIC (implementations provided by Kim [2016]). Our approach
produces a smooth and well-behaved spreading of particles during a

Fig. 9. Liquid flowing around an S-shaped corridor in an octree with char-
acteristic grid size h = 2−6. Our RBF-based method preserves fluid sheets
in comparison with regular PIC solvers. Also, our method produces stable
and energetic splashes, even when using fewer particles.

0 50 100 150 200 250
0

1

2

3

4

5

ki
ne

ti
c

en
er

gy

frame

Fig. 10. The plot of the particles’ kinetic energy after velocity transfers from
the grid for the simulation depicted by Fig. 9: PIC (), FLIP (), APIC (),
and RBF (). Our RBF-based PIC preservesmore energy than regular solvers.

Fig. 11. Streamline visualization of the velocity field of a dam break simu-
lation at t = 2.2 seconds, with characteristic grid size of h = 2−6 (lighter
colors indicate slower velocities). Note that our method preserves more
vorticity than regular PIC/FLIP and similar to APIC.

ACM Trans. Graph., Vol. 39, No. 6, Article 170. Publication date: December 2020.

RBF Liquids: An Adaptive PIC Solver Using RBF-FD • 170:9

Fig. 12. A quadruple dam break in an octree with characteristic grid size h = 2−7 and 1M particles (top) and its surface reconstruction (bottom). The RBF-FD
discretization reaches a speed-up of 2.6× in the PPE linear system solver. The white particles are created during particle reseeding.

liquid splash around an S-shaped corridor’s walls due to its accuracy
and stability of velocity transfers between the grid and particles.
As can be seen, our method preserves thin fluid sheets without parti-
cle clumping, even using 40% fewer particles than regular PIC-based
solvers. Moreover, Fig. 10 shows a plot of the kinetic energy over
time. Our RBF-based PIC is more resilient to artificial dissipation
without sacrificing stability, keeping the splashes “alive” throughout
the simulation.

Besides, the high-order accuracy presented by RBF interpolation
and RBF-FD is attested by our experiments. Our method preserves
vorticities over long periods, as can be seen in Fig. 11. Due to the
severe numerical diffusion of the bilinear/trilinear interpolations
commonly present in regular PIC/FLIP simulations, the fine details of
the flow vanish quickly. AlthoughAPIC produces comparable results
for vorticity preservation, their technique is more complicated to
implement and stores additional information per particle, such as
the affine state matrix and velocity derivatives.

PPE linear system solver. We analyze the efficiency of our adaptive
PPE solver using BiCGSTAB with a parallel Jacobi preconditioner
in a dam break simulation with four water columns creating a huge
splash, as illustrated by Fig. 12. It is worth mentioning that there
is a trade-off between the computational cost of building and ap-
plying the preconditioner and the convergence speed gain. Note
that the PPE matrix size changes throughout the simulation, which
requires the preconditioner to be re-computed at each iteration.
Thus, we compare the PPE solver’s performance when applied to
the non-symmetric Laplacian matrix from our adaptive discretiza-
tion and the SPD system arising from the regular PIC solvers. To
eliminate external factors and guarantee a fair comparison, we apply
a preconditioned Conjugate Gradient (PCG) for regular solvers, also
implemented by Eigen, using the same tolerance of the BiCGSTAB

Table 1. Average timings (in seconds) and statistics of our method per
time-step.

Scene h #Cells #Particles Time
Tgrid TPPE TLap Tvel total

Fig. 1 2−7 169K (71%) 0.8M (58%) 3.54 0.43 0.10 0.70 6.18
Fig. 1 2−8 745K (45%) 4.0M (32%) 27.97 6.57 0.60 5.88 49.09
Fig. 8 2−7 240K (44%) 1.4M (37%) 7.36 1.25 0.25 1.52 12.97
Fig. 12 2−7 201K (73%) 1.0M (56%) 5.82 0.46 0.12 0.92 9.10

and the same parallel preconditioner as well. In this case, we ob-
serve that our solver is 2.6× faster than PCG with Jacobi. For more
sophisticated preconditioners1, we perform a comparison between
our adaptive solver using BiCGSTAB preconditioned with ILU and
the regular solver using PCG with incomplete Cholesky. For this
experiment, we obtain a speed-up of 2.5× with 3× fewer iterations
to converge.

Perfomance analysis. Table 1 presents the average timings and
statistics per time-step run on a 16-core AMD Ryzen 9 3950X proces-
sor at 3.5GHz and 32GB RAM. The first column Scene indicates the
experiment performed using our fluid solver. The columns #Cells
and #Particles show the average number of fluid cells of the adaptive
grid and the average number of particles, respectively. To show the
efficiency of our method, we include in parenthesis the percentage
ratio of the number of fluid cells and particles in our method to
the number of fluid cells and particles in a regular PIC solver with
the same h. In the last columns, we present the average computa-
tional time consumed by adaptation of the grid (Tgrid), solving the
PPE linear system (TPPE), assembling the Laplacian matrix (TLap),
velocity transfers between particles and grid (Tvel), and the total

1Eigen does not provide a parallel implementation for these preconditioners.

ACM Trans. Graph., Vol. 39, No. 6, Article 170. Publication date: December 2020.

170:10 • Nakanishi, R. et al

50 100 150 200 250

350k

360k

370k

380k

390k

400k

410k

420k

Condition Number

frame
50 100 150 200 250

300

400

500

600

frame

Number of Iterations

50 100 150 200 250

1.5k

2.0k

2.5k

3.0k

3.5k

frame

Pressure DOFs

Fig. 13. Liquid drop simulation (leftmost). Comparison between our non-graded quadtree () and a regular grid () with same characteristic size, h = 2−7.
From left to right, the condition number of the PPE matrix, the number of iterations of the linear system solver, and the number of pressure DOFs.

time. All stages of our code, except the grid update, have been paral-
lelized using OpenMP. This explains why this update is the current
bottleneck of our method.

7 NUMERICAL STUDIES
Conditioning. Fig. 13 shows a liquid drop simulation in a regular

and adaptive grid discretization side by side. Our adaptive method
decreases the computational efforts needed to solve it, employing a
non-graded grid with a difference of two levels of resolution between
adjacent cells, achieving similar results using 68% fewer fluid cells
when compared to the same simulation performed in a regular grid
with the same characteristic size. To evaluate how the resulting
PPE system is affected by the RBF interpolation, we compare the
condition numbers of the PPE system matrices and the convergence
of the BiCGSTAB (with relative tolerance set as the machine epsilon
in double precision) for each simulation frame. The figure shows
that although our non-graded discretization increases the condition
number, it does not affect the convergence of the iterative linear
solver. Meanwhile, the number of iterations of the linear system
solver is less than the uniform case due to its reduced number of
degrees of freedom (DOF).

Convergence test. To numerically attest that our solver achieves a
spatial accuracy of second-order in L∞ norm, we consider 2D and 3D
Poisson problems with homogeneous Neumann boundary condition
in the grids depicted by Fig. 14 and Fig. 15, where the exact solutions
arep(x ,y) = cos(x) cos(y)−1 andp(x ,y, z) = cos(x) cos(y) cos(z)−1
on Ω = [0,π]d , respectively. The grid cells are recursively subdi-
vided, and the L∞ error for each refinement is computed. The log-log
plots (base 2) show second-order accuracy for the solution and its
gradient using our approach. An important remark is that the re-
sulting linear systems are singular. To avoid this problem, we need
to impose a Dirichlet boundary condition at one center node of the
domain to obtain a nonsingular system.

Volume preservation. Fig. 16 shows a hydrostatic standing pool
simulation, which yields a linear pressure distribution. Our method
increases the resolution on the boundaries to provide an accu-
rate pressure field, preventing error propagation, and consequently
avoiding volume loss even after a long simulation period.

2 -16

2 -14

2 -12

2 -10

 2 -8

 2 -6

 2 -4

 2 -2
solution

er
ro

r

2 -10 2 -9 2 -8 2 -7 2 -6 2 -5
2 -16

2 -14

2 -12

2 -10

 2 -8

 2 -6

 2 -4

 2 -2
gradient

2 -10 2 -9 2 -8 2 -7 2 -6 2 -5

Fig. 14. Initial non-graded quadtree for a Poisson problem (left). The log-log
plots of the error in L∞ norm varying with h (right). Dashed reference line
indicates the second-order slope.

 2 -7

 2 -8
 2 -9

gradient

2 -4

2 -3

2 -2

2 -1

 2 -6

 2 0

 2 -5

solution

 2 -8

 2 -7

 2 -6

 2 -5

 2 -4

 2 -3

 2 -2

 2 -1

 2 0

er
ro

r

 2 -7 2 -6 2 -5 2 -4 2 -7 2 -6 2 -5 2 -4 2 -8

Fig. 15. Initial non-graded octree for a Poisson problem. A 3D view of the
adaptive grid (bottom-left) and a cutting plane corresponding to z = π/2
(top-left). The log-log plots of the error in L∞ norm varies with h (right).
Dashed reference line indicates the second-order slope.

8 DISCUSSION AND LIMITATIONS
In this section, we highlight limitations present in our method, as
well as potential improvements to the current state of the simulator
and future projects we are working on.

Stencil size. Recent research has shown promising applications of
the RBF-FD technique in the numerical solution of PDEs [Bayona
et al. 2017; Flyer et al. 2016a]. In those applications, the stencil size
is vital for the accuracy of the solution. For the best accuracy, it is

ACM Trans. Graph., Vol. 39, No. 6, Article 170. Publication date: December 2020.

RBF Liquids: An Adaptive PIC Solver Using RBF-FD • 170:11

Fig. 16. Standing pool in an octree (red) with characteristic grid sizeh = 2−8.

recommended the stencil size should be approximately twice the
number of polynomial terms. In our framework, we can increase the
stencil size, expand the k-ring neighborhood, or complement it by
using the k-nearest neighbors of the center node. In our simulations,
the stencil size can reach up to 48 nodes. High-order approximations
with minimal meshfree stencils [Seibold 2008] are yet a topic we
have to explore further since the polynomial degree, the size, and
the layout of the stencil can impact the final result of the simulation.

Levels of resolution. Due to the RBF interpolation and RBF-FD
scheme we have used, the proposed method can deal with non-
graded grids whose difference of the resolution levels between ad-
jacent cells may be higher than two, although in our experiments
we allow a level difference of up to two. While this is already an
improvement regarding other adaptive approaches found in the lit-
erature, allowing more than two resolution levels between cells has
to be further studied since it requires more stencil nodes to compute
the differential weights and maintaining a reasonable number of
particles over coarser cells.

Complex domains. The differential
operators derived from RBF-FD can
be trivially adapted to complex do-
mains modeled by unstructuredmeshes.
For instance, given a simplicial mesh,
we can solve the Laplace equation
∆f = 0 with Dirichlet boundary con-
ditions using RBF-FD (see inset). In this
experiment, we take the 2-ring vertex
neighborhood to build the RBF-FD stencils, while the boundary
conditions f − = −1 and f + = 1 are imposed on the bottommost
and topmost vertices, respectively. However, for fluid flow simula-
tions, the Neumann boundary condition on arbitrary domains is
not a trivial task for RBF-FD and is a limitation of our method. As
future investigation, we intend to study the possibility of enforcing
the Neumann boundary condition as an additional interpolation
constraint using Hermite RBFs [Macêdo et al. 2011].

RBFs near domain boundaries. Our velocity transfer step relies
on an RBF-based interpolation scheme known to present suitable
results over smooth continuous functions, as assumed for the Euler
equations. Near the solid walls and obstacles, the velocity field can
display some oscillatory behavior (Runge’s phenomenon) because
the RBF nodes become highly one-sided. To avoid these unwanted

2 -11

2 -10

 2 -9

 2 -8

 2 -7

 2 -6

 2 -5

 2 -4

 2 -3

er
ro

r

solution

 2 -9 2 -8 2 -7 2 -6 2 -5

Fig. 17. On the left, initial non-graded quadtree for a Poisson problem
with Dirichlet boundary condition at the level-set (blue), the gray cells are
discarded. On the right, the log-log plot of the error in L∞ norm varying
with h. Dashed reference line indicate ideal second-order slope.

oscillations, during the velocity transfer from the grid cells to the
particles, we clamp the interpolated particle velocities in the range
of the velocities stored in the cell edges/faces. A more detailed
discussion about RBF interpolations near boundaries can be found
in [Bayona et al. 2019].

Boundary condition for free-surface. For the free-
surface flow, the exact Dirichlet pressure boundary
condition, p = 0, needs to be ensured at the free-
surface. Similar to [Enright et al. 2003], we can
improve the order accuracy of our discretization by
using level-sets. Let S be the zero level-set, the cell
centers inside S contain pressure DOFs, the cell
centers outside S and belonging to a stencil cut
by S are assigned ghost values pG , and the remaining centers are
discarded. For each stencil edge (xi , xi+1) cutted by S , we compute
the point xS ∈ S where the interface intersects the edge. Then, the
Dirichlet boundary condition pS = 0 is applied at xS . To assess
the accuracy of this strategy, we solve a Poisson equation with an
analytic pressure field given byp(x ,y) = (y−x2+1)4+(x2+y2)−1 and
the level-set S = p−1(0) in the domain Ω = [−1.5, 1.5]×[−1.75, 1.25].
Fig. 17 depicts a discretization of Ω provided by a quadtree where
adjacent cells can differ in depth by up to 2 levels. The log-log
plot shows a second-order accurate discretization of the Dirichlet
pressure boundary condition at S using our approach. Regarding
level-sets, to avoid the usage of an additional high-resolution grid
to compute Eulerian level-sets [Aanjaneya et al. 2017], we intend to
take advantage of the particles to track the free-surface by using the
boundary particles to define the level-set [Sandim et al. 2019]. We
leave the inclusion of this boundary treatment to our framework as
future work.

Lookup table. Concerning the performance, the computation of
the weights of generalized stencils is a compute-intensive task in
our simulations. We have to calculate their differential operators
at each time-step for each cell and its neighbors in the staggered
grid. An alternative approach would be to build a geometric dictio-
nary storing all different stencil configurations and their respective
weights as they appear during the simulation. Such a scheme would

ACM Trans. Graph., Vol. 39, No. 6, Article 170. Publication date: December 2020.

170:12 • Nakanishi, R. et al

avoid computing the weights of already mapped stencils, thus in-
creasing the overall performance of the method. Moreover, recent
studies have shown promising solutions for solving RBF-FD stencils
in parallel by using point indexing [Elliott et al. 2019], which would
be another alternative to be investigated for our framework.

9 CONCLUSION AND FUTURE WORK
We have introduced a novel approach for liquid simulations which
combines an RBF-FD pressure projection solver with the PICmethod.
Our RBF-FD solver can compute the pressure field and its gradients
from generalized stencils on staggered cells of graded/non-graded
tree-based grids. As far as we know, this is the first application of
RBF-FD in Computer Graphics. Besides, we implement an adaptive
grid representation, called Cellgraph, capable of updating itself over
time without discarding its previous state. The results obtained with
our framework, both in 2D and 3D, are visually convincing, pre-
serving details and energy even in the presence of coarser cells and
T-junctions, due to the accurate interpolation scheme and discrete
differentiation we adopted.

Future work. Our current implementation only simulates single-
phase inviscid free-surface flow. It opens some opportunities for
more features to be added to our framework, like viscosity [Goldade
et al. 2019], multiple fluids [Yang et al. 2015], two-way solid-fluid
interactions [Ng et al. 2009], and surface tension [Da et al. 2016].
For instance, we believe that including explicit surface tension in
our pipeline would be straightforward once we are able to track par-
ticles on the free-surface [Sandim et al. 2016, 2020]. Regarding the
PPE solver, a topic for further investigation is to build a multigrid
method based on RBF due to its excellent scalability and opportuni-
ties for parallelization. The Cellgraph refinement can be improved
by choosing other refinement functions like vorticity or curvature
at the surface, as used by Ando et al. [2013]. The dynamic updating
of the topology throughout the simulation without the need for
reinitialization brings other advantages, such as the detection of
solids only when needed and tracking the surface cells, which in the
future can help represent interfaces in multi-material simulations or
in the computation of level sets. There is plenty of room for further
optimizations in Cellgraph, such as arranging nodes and edges in
memory layouts to improve cache access and parallel processing to
update the graph’s disjoint regions. Currently, our particle reseed-
ing does not act on surface cells. Consequently, it can considerably
increase the number of PIC particles in the system. Thus, another
direction of investigation would be to study an efficient particle
reseeding scheme capable of handling the surface cells. Also, we in-
tend to investigate the linear and angular momentum conservation.
Finally, we also plan to implement parallel versions of our solver in
heterogeneous environments made up of multiple CPUs and GPUs.

ACKNOWLEDGMENTS
We want to thank Fabrício Simeoni de Sousa and Antonio Castelo
for insightful discussions throughout this work, and the SIGGRAPH
Asia reviewers for their comments. We also thank Cristin Barghiel
from SideFX for their kind donation of the Houdini licenses and

Leonardo Martinussi for the computing infrastructure at ICMC-
USP. This study was financed in part by the Coordenação de Aper-
feiçcoamento de Pessoal de Nível Superior – Brazil (CAPES), Na-
tional Council for Scientific and Technological Development – Brazil
(CNPq) fellowship #301642/2017-6, and São Paulo Research Foun-
dation (FAPESP) under grants #2018/06145-4 and #2019/23215-9.
The computational resources were provided by the Center for Math-
ematical Sciences Applied to Industry (CeMEAI), also funded by
FAPESP (grant #2013/07375).

REFERENCES
M. Aanjaneya, M. Gao, H. Liu, C. Batty, and E. Sifakis. 2017. Power diagrams and sparse

paged grids for high resolution adaptive liquids. ACM Trans. Graph. 36, 4 (2017),
1–12.

B. Adams, M. Pauly, R. Keiser, and L. J. Guibas. 2007. Adaptively sampled particle fluids.
ACM Trans. Graph. 26, 3 (2007).

R. Ando, N. Thurey, and R. Tsuruno. 2012. Preserving fluid sheets with adaptively
sampled anisotropic particles. IEEE Trans. Vis. Comput. Graph. 18, 8 (2012), 1202–
1214.

R. Ando, N. Thürey, and C. Wojtan. 2013. Highly adaptive liquid simulations on
tetrahedral meshes. ACM Trans. Graph. 32, 4 (2013), 103:1–103:10.

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. van der Vorst. 1994. Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods. SIAM.

C. Batty. 2017. A cell-centred finite volume method for the Poisson problem on non-
graded quadtrees with second order accurate gradients. J. Comput. Phys. 331 (2017),
49–72.

C. Batty, S. Xenos, and B. Houston. 2010. Tetrahedral embedded boundary methods for
accurate and flexible adaptive fluids. Comput. Graph. Forum 29, 2 (2010), 695–704.

V. Bayona, N. Flyer, and B. Fornberg. 2019. On the role of polynomials in RBF-FD
approximations: III. Behavior near domain boundaries. J. Comput. Phys. 380 (2019),
378 – 399.

V. Bayona, N. Flyer, B. Fornberg, and G. A. Barnett. 2017. On the role of polynomials in
RBF-FD approximations: II. Numerical solution of elliptic PDEs. J. Comput. Phys.
332 (2017), 257–273.

R. Bridson. 2015. Fluid Simulation (2nd ed.). A. K. Peters.
T. Brochu, C. Batty, and R. Bridson. 2010. Matching fluid simulation elements to surface

geometry and topology. In ACM Trans. Graph., Vol. 29.
J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and

T. R. Evans. 2001. Reconstruction and representation of 3D objects with radial basis
functions. In SIGGRAPH ’01. ACM, 67–76.

N. Chentanez, B. E. Feldman, F. Labelle, J. F. O’Brien, and J. R. Shewchuk. 2007. Liquid
Simulation on Lattice-Based Tetrahedral Meshes. In SCA ’07. 219–228.

N. Chentanez and M. Müller. 2011. Real-time Eulerian water simulation using a re-
stricted tall cell grid. In ACM Trans. Graph., Vol. 30. 82:1–82:10.

F. Da, D. Hahn, C. Batty, C. Wojtan, and E. Grinspun. 2016. Surface-only liquids. ACM
Trans. Graph. 35, 4 (2016), 1–12.

E. Edwards and R. Bridson. 2012. A high-order accurate particle-in-cell method. Int. J.
Numer. Meth. Eng. 90, 9 (2012), 1073–1088.

S. Elliott, R. R. P. Kumar, N. Flyer, T. Ta, and R. Loft. 2019. Implementation of a scalable,
performance portable shallow water equation solver using radial basis function-
generated finite difference methods. Int. J. High Perform. Comput. Appl. 33, 4 (2019),
619–631.

D. Enright, D. Nguyen, F. Gibou, and R. Fedkiw. 2003. Using the particle level set
method and a second order accurate pressure boundary condition for free surface
flows. In Proc. of the 4th ASME-JSME Joint Fluids Engineering Conference. 337–342.

G. F. Fasshauer. 2007. Meshfree Approximation Methods with MATLAB. World Scientific.
F. Ferstl, R. Ando, C. Wojtan, R. Westermann, and N. Thuerey. 2016. Narrow band FLIP

for liquid simulations. Comput. Graph. Forum 35, 2 (2016), 225–232.
F. Ferstl, R. Westermann, and C. Dick. 2014. Large-scale liquid simulation on adaptive

hexahedral grids. IEEE Trans. Vis. Comput. Graph. 20, 10 (2014), 1405–1417.
N. Flyer, G. A. Barnett, and L. J. Wicker. 2016a. Enhancing finite differences with radial

basis functions: experiments on the Navier-Stokes equations. J. Comput. Phys. 316
(2016), 39–62.

N. Flyer, B. Fornberg, V. Bayona, and G. A. Barnett. 2016b. On the role of polynomials in
RBF-FD approximations: I. Interpolation and accuracy. J. Comput. Phys. 321 (2016),
21–38.

B. Fornberg and N. Flyer. 2015. Solving PDEs with radial basis functions. Acta Numerica
24 (2015), 215–258.

M. Gao, A. P. Tampubolon, C. Jiang, and E. Sifakis. 2017. An adaptive generalized
interpolation material point method for simulating elastoplastic materials. ACM
Trans. Graph. 36, 6 (2017), 1–12.

ACM Trans. Graph., Vol. 39, No. 6, Article 170. Publication date: December 2020.

RBF Liquids: An Adaptive PIC Solver Using RBF-FD • 170:13

R. Goldade, Y. Wang, M. Aanjaneya, and C. Batty. 2019. An adaptive variational finite
difference framework for efficient symmetric octree viscosity. ACM Trans. Graph.
38, 4 (2019).

G. Guennebaud, B. Jacob, and Others. 2010. Eigen v3. http://eigen.tuxfamily.org.
A. Guittet, M. Theillard, and F. Gibou. 2015. A stable projection method for the incom-

pressible Navier-Stokes equations on arbitrary geometries and adaptive quad/octrees.
J. Comput. Phys. 292 (2015), 215–238.

W. Hong, D. H. House, and J. Keyser. 2009. An Adaptive Sampling Approach to Incom-
pressible Particle-Based Fluid. Ph.D. Dissertation. Texas A & M University.

M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and M. Teschner. 2014. SPH Fluids in
Computer Graphics. In Eurographics 2014 - State of the Art Reports.

G. Irving, E. Guendelman, F. Losasso, and R. Fedkiw. 2006. Efficient simulation of large
bodies of water by coupling two and three dimensional techniques. ACM Trans.
Graph. 25, 3 (2006), 805–811.

C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The affine particle-in-
cell method. ACM Trans. Graph. 34, 4 (2015), 51:1–51:10.

D. Kim. 2016. Fluid Engine Development. CRC Press.
B. M. Klingner, B. E. Feldman, N. Chentanez, and J. F. O’Brien. 2006. Fluid animation

with dynamic meshes. In ACM Trans. Graph., Vol. 25. 820–825.
F. Losasso, R. Fedkiw, and S. Osher. 2006. Spatially adaptive techniques for level set

methods and incompressible flow. Computers & Fluids 35, 10 (2006), 995 – 1010.
F. Losasso, F. Gibou, and R. Fedkiw. 2004. Simulating water and smoke with an octree

data structure. ACM Trans. Graph. 23, 3 (2004), 457–462.
I. Macêdo, J. P. Gois, and L. Velho. 2011. Hermite radial basis functions implicits. Comput.

Graph. Forum 30, 1 (2011), 27–42.
P. L. Manteaux, C. Wojtan, R. Narain, S. Redon, F. Faure, and M. P. Cani. 2017. Adaptive

physically based models in computer graphics. Comput. Graph. Forum 36, 6 (2017),
312–337.

S. McKee, M. F. Tomé, V. G. Ferreira, J. A. Cuminato, A. Castelo, F. S. Sousa, and N.
Mangiavacchi. 2008. The MAC method. Computers & Fluids 37, 8 (2008), 907–930.

C. Min and F. Gibou. 2007. A second order accurate level set method on non-graded
adaptive cartesian grids. J. Comput. Phys. 225, 1 (2007), 300–321.

C. Min, F. Gibou, and H. D. Ceniceros. 2006. A supra-convergent finite difference
scheme for the variable coefficient Poisson equation on non-graded grids. J. Comput.
Phys. 218, 1 (2006), 123–140.

Y. T. Ng, C. Min, and F. Gibou. 2009. An efficient fluid–solid coupling algorithm for
single-phase flows. J. Comput. Phys. 228, 23 (2009), 8807–8829.

M. B. Nielsen and R. Bridson. 2016. Spatially adaptive FLIP fluid simulations in Bifrost.
In ACM SIGGRAPH 2016 Talks. 41:1–41:2.

Y. Ohtake, A. Belyaev, and H. Seidel. 2005. 3D scattered data interpolation and ap-
proximation with multilevel compactly supported RBFs. Graph. Models 67, 3 (2005),
150–165.

M. A. Olshanskii, K. M. Terekhov, and Y. V. Vassilevski. 2013. An octree-based solver
for the incompressible Navier–Stokes equations with enhanced stability and low
dissipation. Computers & Fluids 84 (2013), 231–246.

M. Sandim, D. Cedrim, L. G. Nonato, P. Pagliosa, and A. Paiva. 2016. Boundary detection
in particle-based fluids. Comput. Graph. Forum 35, 2 (2016), 215–224.

M. Sandim, N. Oe, D. Cedrim, P. Pagliosa, and A. Paiva. 2019. Boundary particle
resampling for surface reconstruction in liquid animation. Computers & Graphics
84 (2019), 55 – 65.

M. Sandim, A. Paiva, and L. H. de Figueiredo. 2020. Simple and reliable boundary
detection for meshfree particle methods using interval analysis. J. Comput. Phys.
420 (2020), 109702.

T. Sato, C. Wojtan, N. Thuerey, T. Igarashi, and R. Ando. 2018. Extended narrow band
FLIP for liquid simulations. Comput. Graph. Forum 37, 2 (2018), 169–177.

B. Seibold. 2008. Minimal positive stencils in meshfree finite difference methods for
the Poisson equation. Comput. Methods Appl. Mech. Eng. 198, 3–4 (2008), 592–601.

R. Setaluri, M. Aanjaneya, S. Bauer, and E. Sifakis. 2014. SPGrid: a sparse paged grid
structure applied to adaptive smoke simulation. ACM Trans. Graph. 33, 6 (2014).

F. Sin, A. W. Bargteil, and J. K. Hodgins. 2009. A point-based method for animating
incompressible flow. In SCA ’09. 247–255.

B. Solenthaler and M. Gross. 2011. Two-scale particle simulation. ACM Trans. Graph.
30, 4 (2011), 81:1–81:8.

F. S. Sousa, C. F. Lages, J. L. Ansoni, A. Castelo, and A. Simao. 2019. A finite difference
method with meshless interpolation for incompressible flows in non-graded tree-
based grids. J. Comput. Phys. 396 (2019), 848–866.

J. Stam. 1999. Stable fluids. In Proc. of SIGGRAPH ’99. ACM, 121–128.
G. Turk and J. F. O’Brien. 2002. Modelling with implicit surfaces that interpolate. ACM

Trans. Graph. 21, 4 (2002), 855–873.
R. Winchenbach, H. Hochstetter, and A. Kolb. 2017. Infinite continuous adaptivity for

incompressible SPH. ACM Trans. Graph. 36, 4 (2017), 102:1–102:10.
G. B. Wright and B. Fornberg. 2006. Scattered node compact finite difference-type

formulas generated from radial basis functions. J. Comput. Phys. 212, 1 (2006),
99–123.

T. Yang, J. Chang, B. Ren, M. C. Lin, J. J. Zhang, and S. Hu. 2015. Fast Multiple-Fluid
Simulation Using Helmholtz Free Energy. ACM Trans. Graph. 34, 6 (2015).

A DERIVING THE RBF-FD APPROXIMATION
The approximation (5) is obtained by imposing that Ly(xi) be exact
for the interpolant Sy (x) with the constraints (1) and (3). Applying
the operator L on Eqn. (2) and then evaluating at the point xi ,
we have

LSy (xi) =

N∑
k=1

αk Lϕ(∥xi − xk ∥) +
M∑
j=1

βj LPj (xi)

=
[
Lϕ⊤ LP⊤

] [α
β

]
=

[
Lϕ⊤ LP⊤

] [A P
P⊤ O

]−1 [y
0

]
=

[
ω⊤ γ⊤

] [y
0

]
=

N∑
k=1

ωk yk .

The transpose of [ω⊤,γ⊤] is the solution of the linear system (6).
Notice that the weights stored inγ are ignored because their entries
are multiplied by zero.

B PYTHON CODE FOR RBF-FD WEIGHTS

1 import numpy as np
2 import scipy.spatial.distance as sd
3
4 def rbf_fd_weights(X,ctr ,s,d):
5 # X : each row contains one node in R^3
6 # ctr : center (evaluation) node
7 # s,d : PHS order and polynomial degree
8 rbf = lambda r,s: r**s
9 Drbf = lambda r,s,xi: s*xi*r**(s-2)
10 Lrbf = lambda r,s: s*(s+1)*r**(s-2)
11 n = X.shape [0]
12 for i in range (3): X[:,i] -= ctr[i]
13 DM = sd.squareform(sd.pdist(X))
14 D = np.sqrt(X[: ,0]**2 + X[: ,1]**2 + X[: ,2]**2)
15 A,lap ,dx = rbf(DM,s),Lrbf(D,s),Drbf(D,s,-X[:,0])
16 dy,dz = Drbf(D,s,-X[:,1]),Drbf(D,s,-X[:,2])
17 b = np.vstack ((lap ,dx,dy,dz)).T
18 if d>-1: # adding polynomials
19 m = int((d+3)*(d+2)*(d+1)/6)
20 O,c = np.zeros((m,m)),0
21 P,LP = np.zeros((n,m)),np.zeros((m,4))
22 for k in range(d+1):
23 for j in range(d+1):
24 for i in range(d+1):
25 if i+j+k > d: continue
26 if i+j+k == 1 and i == 1: cx1 = c
27 if i+j+k == 1 and j == 1: cy1 = c
28 if i+j+k == 1 and k == 1: cz1 = c
29 if i+j+k == 2 and i == 2: cx2 = c
30 if i+j+k == 2 and j == 2: cy2 = c
31 if i+j+k == 2 and k == 2: cz2 = c
32 P[:,c],c = X[: ,0]**i*X[: ,1]**j*X[: ,2]**k,c+1
33 if d>0: LP[cx1 ,1],LP[cy1 ,2],LP[cz1 ,3] = 1,1,1
34 if d>1: LP[cx2 ,0],LP[cy2 ,0],LP[cz2 ,0] = 2,2,2
35 A = np.block ([[A,P],[P.T,O]])
36 b = np.block ([[b],[LP]])
37 # each column contains the weights for the
38 # Laplacian , d/dx1 , d/dx2 , d/dx3 , respectivly.
39 weights = np.linalg.solve(A,b)
40 return weights [:n,:]

ACM Trans. Graph., Vol. 39, No. 6, Article 170. Publication date: December 2020.

